Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 304
Filtrar
1.
J Hazard Mater ; 470: 134181, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569343

RESUMO

Electrochemically in-situ generation of oxygen and caustic soda is promising for sulfide management while suffers from scaling, poor inactivating capacity, hydrogen release and ammonia escape. In this study, the four-compartment electrochemical cell efficiently captured oxygen molecules from the air chamber to produce HO2- without generating toxic by-products. Meanwhile, the catalyst layer surface of PTFE/CB-GDE maintained a relatively balanced gas-liquid micro-environment, enabling the formation of enduring solid-liquid-gas interfaces for efficient HO2- electrosynthesis. A dramatic increase in HO2- generation rate from 453.3 mg L-1 h-1 to 575.4 mg L-1 h-1 was attained by advancement in operation parameters design (flow channels, electrolyte types, flow rates and circulation types). Stability testing resulted in the HO2- generation rate over 15 g L-1 and the current efficiency (CE) exceeding 85%, indicating a robust stable operational capacity. Furthermore, after 120 mg L-1 HO2- treatment, an increase of 11.1% in necrotic and apoptotic cells in the sewer biofilm was observed, higher than that achieved with the addition of NaOH, H2O2 method. The in-situ electrosynthesis strategy for HO2- represents a significance toward the practical implementation of sulfide abatement in sewers, holding the potential to treat various sulfide-containing wastewater.

2.
Sci Total Environ ; 926: 172025, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38554954

RESUMO

Adsorption, which is a quick and effective method for phosphate management, can effectively address the crisis of phosphorus mineral resources and control eutrophication. Phosphate management systems typically use iron-containing nanominerals (ICNs) with large surface areas and high activity, as well as modified ICNs (mICNs). This paper comprehensively reviews phosphate management by ICNs and mICNs in different water environments. mICNs have a higher affinity for phosphates than ICNs. Phosphate adsorption on ICNs and mICNs occurs through mechanisms such as surface complexation, surface precipitation, electrostatic ligand exchange, and electrostatic attraction. Ionic strength influences phosphate adsorption by changing the surface potential and isoelectric point of ICNs and mICNs. Anions exhibit inhibitory effects on ICNs and mICNs in phosphate adsorption, while cations display a promoting effect. More importantly, high concentrations and molecular weights of natural organic matter can inhibit phosphate adsorption by ICNs and mICNs. Sodium hydroxide has high regeneration capability for ICNs and mICNs. Compared to ICNs with high crystallinity, those with low crystallinity are less likely to desorb. ICNs and mICNs can effectively manage municipal wastewater, eutrophic seawater, and eutrophic lakes. Adsorption of ICNs and mICNs saturated with phosphate can be used as fertilizers in agricultural production. Notably, mICNs and ICNs have positive and negative effects on microorganisms and aquatic organisms in soil. Finally, this study introduces the following: trends and prospects of machine learning-guided mICN design, novel methods for modified ICNs, mICN regeneration, development of mICNs with high adsorption capacity and selectivity for phosphate, investigation of competing ions in different water environments by mICNs, and trends and prospects of in-depth research on the adsorption mechanism of phosphate by weakly crystalline ferrihydrite. This comprehensive review can provide novel insights into the research on high-performance mICNs for phosphate management in the future.

3.
J Hazard Mater ; 467: 133618, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38335612

RESUMO

Sulfur-containing substances in sewers frequently incur unpleasant odors, corrosion-related economic loss, and potential human health concerns. These observations are principally attributed to microbial reactions, particularly the involvement of sulfate-reducing bacteria (SRB) in sulfur reduction process. As a multivalent element, sulfur engages in complex bioreactions in both aerobic and anaerobic environments. Organic sulfides are also present in sewage, and these compounds possess the potential to undergo transformation and volatilization. In this paper, a comprehensive review was conducted on the present status regarding sulfur transformation, transportation, and remediation in sewers, including both inorganic and organic sulfur components. The review extensively addressed reactions occurring in the liquid and gas phase, as well as examined detection methods for various types of sulfur compounds and factors affecting sulfur transformation. Current remediation measures based on corresponding mechanisms were presented. Additionally, the impacts of measures implemented in sewers on the subsequent wastewater treatment plants were also discussed, aiming to attain better management of the entire wastewater system. Finally, challenges and prospects related to the issue of sulfur-containing substances in sewers were proposed to facilitate improved management and development of the urban water system.


Assuntos
Desulfovibrio , Enxofre , Humanos , Compostos de Enxofre , Corrosão , Esgotos
4.
Environ Int ; 184: 108466, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38310816

RESUMO

The selective removal of targeted pollutants from complex wastewater is challenging. Herein, a novel persulfate (PS)-based advanced oxidation system equipped with a series of two-dimensional (2D) bimetallic oxide nanosheets (NSs) catalysts is developed to selectively degrade bisphenol A (BPA) within mixed pollutants via initiating nonradical-induced polymerization. Results indicate that the Ni0.60Co0.40Ox NSs demonstrate the highest catalytic efficiency among all Ni-Co NSs catalysts. Specifically, BPA degradation rate is 47.34, 27.26, and 9.72 times higher than that of 4-chlorophenol, phenol, and 2,4-dichlorophenol in the mixed solution, respectively. The lower oxidative potential of BPA in relation to the other pollutants renders it the primary target for oxidation within the PDS activation system. PDS molecules combine on the surface of Ni0.60Co0.40Ox NSs to form the surface-activated complex, triggering the generation of BPA monomer radicals through H-abstraction or electron transfer. These radicals subsequently polymerize on the surface of the catalyst through coupling reactions. Importantly, this polymerization process can occur under typical aquatic environmental conditions and demonstrates resistance to background matrices like Cl- and humic acid due to its inherent nonradical attributes. This study offers valuable insights into the targeted conversion of organic pollutants in wastewater into value-added polymers, contributing to carbon recycle and circular economy.


Assuntos
Compostos Benzidrílicos , Poluentes Ambientais , Poluentes Químicos da Água , Óxidos , Águas Residuárias , Oxirredução , Fenóis/análise
5.
Environ Sci Technol ; 58(10): 4662-4669, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38422482

RESUMO

Since the mass production and extensive use of chloroquine (CLQ) would lead to its inevitable discharge, wastewater treatment plants (WWTPs) might play a key role in the management of CLQ. Despite the reported functional versatility of ammonia-oxidizing bacteria (AOB) that mediate the first step for biological nitrogen removal at WWTP (i.e., partial nitrification), their potential capability to degrade CLQ remains to be discovered. Therefore, with the enriched partial nitrification sludge, a series of dedicated batch tests were performed in this study to verify the performance and mechanisms of CLQ biodegradation under the ammonium conditions of mainstream wastewater. The results showed that AOB could degrade CLQ in the presence of ammonium oxidation activity, but the capability was limited by the amount of partial nitrification sludge (∼1.1 mg/L at a mixed liquor volatile suspended solids concentration of 200 mg/L). CLQ and its biodegradation products were found to have no significant effect on the ammonium oxidation activity of AOB while the latter would promote N2O production through the AOB denitrification pathway, especially at relatively low DO levels (≤0.5 mg-O2/L). This study provided valuable insights into a more comprehensive assessment of the fate of CLQ in the context of wastewater treatment.


Assuntos
Amônia , Compostos de Amônio , Amônia/metabolismo , Esgotos/microbiologia , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Oxirredução , Óxido Nitroso/análise , Nitrificação , Compostos de Amônio/metabolismo
6.
J Hazard Mater ; 465: 133438, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38198865

RESUMO

Given widespread presence of polystyrene (PS) microplastics/nanoplastics (MPs/NPs), the electroactive responses and adaptation mechanisms of electroactive biofilms (EABs) exposed long-term to PS-containing aquatic environments remain unclear. Therefore, this study investigated the impacts of PS MPs/NPs on electroactivity of EABs. Results found that EABs exhibited delayed formation upon initially exposure but displayed an increased maximum current density (Imax) after subsequent exposure for up to 55 days. Notably, EABs exposure to NH2PS NPs (EAB-NH2PSNPs) demonstrated a 50% higher Imax than the control, along with a 17.84% increase in viability and a 58.10% increase in biomass. The cytochrome c (c-Cyts) content in EAB-NH2PSNPs rose by 178.35%, benefiting the extracellular electron transfer (EET) of EABs. Moreover, bacterial community assembly indicated the relative abundance of electroactive bacteria increased to 87.56% in EAB-NH2PSNPs. The adaptability mechanisms of EABs under prolonged exposure to PS MPs/NPs predominantly operate by adjusting viability, EET, and bacterial community assembly, which were further confirmed a positive correlation with Imax through structural equation model. These findings provide deeper insights into long-term effects and mechanisms of MPs/NPs on the electroactive properties of EABs and even functional microorganisms in aquatic ecosystems.


Assuntos
Microplásticos , Poliestirenos , Plásticos , Ecossistema , Biofilmes
7.
Water Res ; 251: 121151, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38246075

RESUMO

The discovery of complete ammonium oxidation (comammox) has subverted the traditional perception of two-step nitrification, which plays a key role in achieving biological nitrogen removal from wastewater. Floccular sludge-based treatment technologies are being applied at the majority of wastewater treatment plants in service where detection of various abundances and activities of comammox bacteria have been reported. However, limited efforts have been made to enrich and subsequently characterize comammox bacteria in floccular sludge. To this end, a lab-scale sequencing batch reactor (SBR) in the step-feeding mode was applied in this work to enrich comammox bacteria through controlling appropriate operational conditions (dissolved oxygen of 0.5 ± 0.1 g-O2/m3, influent ammonium of 40 g-N/m3 and uncontrolled longer sludge retention time). After 215-d operation, comammox bacteria gradually gained competitive advantages over counterparts in the SBR with a stable nitrification efficiency of 92.2 ± 2.2 %: the relative abundance of Nitrospira reached 42.9 ± 1.3 %, which was 13 times higher than that of Nitrosomonas, and the amoA gene level of comammox bacteria increased to 7.7 ± 2.1 × 106 copies/g-biomass, nearly 50 times higher than that of conventional ammonium-oxidizing bacteria. The enrichment of comammox bacteria, especially Clade A Candidatus Nitrospira nitrosa, in the floccular sludge led to (i) apparent affinity constants for ammonium and oxygen of 3.296 ± 0.989 g-N/m3 and 0.110 ± 0.004 g-O2/m3, respectively, and (ii) significantly low N2O and NO production, with emission factors being 0.136 ± 0.026 % and 0.023 ± 0.013 %, respectively.


Assuntos
Compostos de Amônio , Esgotos , Esgotos/microbiologia , Amônia , Bactérias , Nitrificação , Oxirredução , Oxigênio , Filogenia , Archaea
8.
Environ Sci Pollut Res Int ; 31(2): 2243-2257, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38055173

RESUMO

Heavy metals (e.g., Cu) in wastewater are attractive resources for diverse applications, and adsorption is a promising route to recovery of heavy metals from wastewater. However, high-performance adsorbents with high adsorption capacity, speed, and stability remain challenging. Herein, chelating fibers were prepared by chemically grafting amine and carboxyl groups onto the polyacrylonitrile fiber surface and used in the wastewater's adsorption of Cu2+. The adsorption behavior of Cu2+ on the fibers was systematically investigated, and the post-adsorption fibers were comprehensively characterized to uncover the adsorption mechanism. The results show that chelated fiber has a 136.3 mg/g maximum capacity for Cu2+ adsorption at pH = 5, and the whole adsorption process could reach equilibrium in about 60 min. The adsorption process corresponds to the quasi-secondary kinetic and Langmuir models. The results of adsorption, FTIR, and XPS tests indicate that the synergistic coordination of -COOH and -NH2 plays a leading role in the rapid capture of Cu2+. In addition, introducing hydrophilic groups facilitates the rapid contact and interaction of the fibers with Cu2+ in the solution. After being used five times, the fiber's adsorption capacity remains at over 90% of its original level.


Assuntos
Resinas Acrílicas , Metais Pesados , Poluentes Químicos da Água , Cobre/química , Águas Residuárias , Poliaminas , Íons , Adsorção , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
9.
Sci Total Environ ; 912: 168881, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38042200

RESUMO

Polyfluoroalkyl and perfluoroalkyl (PFAS) chemicals are fluorinated and exhibit complicated behavior. They are determined and highly resistant to ecological modifications that render plants ecologically robust. Thermal stability and water and oil resistance are examples of material qualities. Their adverse consequences are causing increasing worry due to their bioaccumulative nature in humans and other creatures. Direct data indicates that PFAS exposure in humans causes endocrine system disruption, immune system suppression, obesity, increased cholesterol, and cancer. Several PFASs are present in drinking water at low doses and may harm people. These cancer-causing PFAS have caused concern for water bodies all around the globe. Analytical techniques are used to identify and measure PFAS in an aqueous medium (membrane). Furthermore, a deeper explanation is provided for PFAS removal methods, including mixed matrix membrane (MMM) technology. By removing over 99 % of the PFAS from wastewater, MMMs may effectively remove PFAS from sewage when the support matrix contains adsorbing components. Furthermore, we consider several factors affecting the removal of PFAS and practical sorption methods for PFAS onto various adsorbents.


Assuntos
Água Potável , Fluorocarbonos , Neoplasias , Poluentes Químicos da Água , Humanos , Águas Residuárias , Fluorocarbonos/análise , Poluentes Químicos da Água/análise
10.
Chemosphere ; 349: 140859, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048828

RESUMO

Volatile fatty acids (VFA) from sewage sludge represent an excellent recovered resource from wastewater treatment. This study investigated four sludge pre-treatments (namely, potassium permanganate - KMnO4, initial pH = 10, initial pH = 2.5 and low-temperature thermal hydrolysis) by operating batch reactors under acidogenic fermentation conditions. Results revealed that 0.1 g KMnO4/g of total suspended solids represents the best pre-treatment obtaining up to 2713 mgCOD L-1 and 452 mgCOD/g of volatile suspended solids. These results also paralleled metataxonomic analysis highlighting changes in prokaryotic microbial structures of sewage sludge of the batch fermentations subjected to the different pre-treatments.


Assuntos
Reatores Biológicos , Esgotos , Fermentação , Esgotos/química , Ácidos Graxos Voláteis , Hidrólise , Concentração de Íons de Hidrogênio
11.
J Environ Manage ; 350: 119567, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38007927

RESUMO

Dealing with the current defaults of environmental toxicity, heating, waste management, and economic crises, exploration of novel non-edible, toxic, and waste feedstock for renewable biodiesel synthesis is the need of the hour. The present study is concerned with Buxus papillosa with seeds oil concentration (45% w/w), a promising biodiesel feedstock encountering environmental defaults and waste management; in addition, this research performed simulation based-response surface methodology (RSM) for Buxus papillosa bio-diesel. Synthesis and application of novel Phyto-nanocatalyst bimetallic oxide with Buxus papillosa fruit capsule aqueous extract was advantageous during transesterification. Characterization of sodium/potassium oxide Phyto-nanocatalyst confirmed 23.5 nm nano-size and enhanced catalytic activity. Other characterizing tools are FTIR, DRS, XRD, Zeta potential, SEM, and EDX. Methyl ester formation was authenticated by FTIR, GC-MS, and NMR. A maximum 97% yield was obtained at optimized conditions i.e., methanol ratio to oil (8:1), catalyst amount (0.37 wt%), reaction duration (180 min), and temperature of 80 °C. The reusability of novel sodium/potassium oxide was checked for six reactions. Buxus papillosa fuel properties were within the international restrictions of fuel. The sulphur content of 0.00090% signified the environmental remedial nature of Buxus papillosa methyl esters and it is a highly recommendable species for biodiesel production at large scale due to a t huge number of seeds production and vast distribution.


Assuntos
Buxus , Gerenciamento de Resíduos , Resíduos Perigosos , Biocombustíveis/análise , Ésteres , Catálise , Sódio , Óleos de Plantas
12.
J Environ Manage ; 351: 119761, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38113785

RESUMO

The practice of aquaculture is associated with the generation of a substantial quantity of effluent. Microalgae must effectively assimilate nitrogen and phosphorus from their surrounding environment for growth. This study modeled the algal biomass film, NO3-N concentration, and pH in the membrane bioreactor using the response surface methodology (RSM) and an artificial neural network (ANN). Furthermore, it was suggested that the optimal condition for each parameter be determined. The results of ANN modeling showed that ANN with a structure of 5-3 and employing the transfer functions tansig-logsig demonstrated the highest level of accuracy. This was evidenced by the obtained values of coefficient (R2) = 0.998, R = 0.999, mean squared error (MAE) = 0.0856, and mean square error (MSE) = 0.143. The ANN model, characterized by a 5-5 structure and employing the tansig-logsig transfer function, demonstrates superior accuracy when predicting the concentration of NO3-N and pH. This is evidenced by the high values of R2 (0.996), R (0.998), MAE (0.00162), and MSE (0.0262). The RSM was afterward employed to maximize the performance of algal film biomass, pH levels, and NO3-N concentrations. The optimal conditions for the algal biomass film were a concentration of 2.884 mg/L and a duration of 6.589 days. Similarly, the most favorable conditions for the NO3-N concentration and pH were 2.984 mg/L and 6.787 days, respectively. Therefore, this research uses non-dominated sorting genetic algorithm II (NSGA II) to find the optimal NO3-N concentration, algal biomass film, and pH for product or process quality. The region has the greatest alkaline pH and lowest NO3-N content.


Assuntos
Dióxido de Carbono , Redes Neurais de Computação , Biomassa , Reatores Biológicos , Concentração de Íons de Hidrogênio
13.
J Environ Manage ; 351: 119973, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160547

RESUMO

Wastes recycling and reutilization technique could simultaneously fulfill waste control and energy recovery sustainably, which has attracted increasing attention. This work proposed a novel waste reuse technology utilizing ceramsite and amended Fe2O3-ceramsite made from waste activated sludge (WAS) as additives to promote the yield of methane from WAS anaerobic digestion (AD). Experimental results demonstrated that compared to the control (85.05 ± 0.2 mL CH4/g-VS), the cumulative methane yield was effectively enhanced by 14% and 40% when ceramsite and Fe2O3-ceramsite were added. Further investigation revealed that ceramsite, especially the Fe2O3-ceramsite, enriched the populations of key anaerobes involved in hydrolysis, acidification, and methanogenesis. Meanwhile, potential syntrophic metabolisms between syntrophic bacteria and methanogens were confirmed in the Fe2O3-ceramsite AD system. Mechanisms studies exhibited that ceramsite and Fe2O3-ceramsite reinforced intermediate processes for methane production. The favorable pore structure, enhanced Fe (III) reduction capacity and conductivity also contributed a lot to the AD process.


Assuntos
Bactérias Anaeróbias , Misturas Complexas , Esgotos , Anaerobiose , Esgotos/química , Bactérias Anaeróbias/metabolismo , Metano , Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos
14.
Water Res ; 250: 120999, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38118258

RESUMO

Biochar is an economical carbon material for water pollution control, which shows great promise to be applied in the up-scale wastewater remediation processes. Previous studies demonstrate that persistent free radicals (PFRs) on biochar are critical to its reactivity for wastewater remediation. A series of studies have revealed the important roles of PFRs when biochar was applied for organic pollutants degradation as well as the removal of Cr (VI) and As (III) from wastewater. Therefore, this review comprehensively concludes the significance of PFRs for the catalytic capabilities of biochar in advanced oxidation processes (AOPs)-driven organic pollutant removal, and applied in redox processes for Cr (VI) and As (III) remediation. In addition, the mechanisms for PFRs formation during biochar synthesis are discussed. The detection methods are reviewed for the quantification of PFRs on biochar. Future research directions were also proposed on underpinning the knowledge base to forward the applications of biochar in practical real wastewater treatment.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Águas Residuárias , Carvão Vegetal , Carbono , Radicais Livres
15.
Chemosphere ; 350: 140999, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38151066

RESUMO

In this study, machine learning-based models were established for layer-by-layer (LBL) nanofiltration (NF) membrane performance prediction and polymer candidate exploration. Four different models, i.e., linear, random forest (RF), boosted tree (BT), and eXtreme Gradient Boosting (XGBoost), were formed, and membrane performance prediction was determined in terms of membrane permeability and selectivity. The XGBoost exhibited optimal prediction accuracy for membrane permeability (coefficient of determination (R2): 0.99) and membrane selectivity (R2: 0.80). The Shapley Additive exPlanation (SHAP) method was utilized to evaluate the effects of different LBL NF membrane fabrication conditions on membrane performances. The SHAP method was also used to identify the relationships between polymer structure and membrane performance. Polymers were represented by Morgan fingerprint, which is an effective description approach for developing modeling. Based on the SHAP value results, two reference Morgan fingerprints were constructed containing atomic groups with positive contributions to membrane permeability and selectivity. According to the reference Morgan fingerprint, 204 potential polymers were explored from the largest polymer database (PoLyInfo). By calculating the similarities between each potential polymer and both reference Morgan fingerprints, 23 polymer candidates were selected and could be further used for LBL NF membrane fabrication with the potential for providing good membrane performance. Overall, this work provided new ways both for LBL NF membrane performance prediction and high-performance polymer candidate exploration. The source code for the models and algorithms used in this study is publicly available to facilitate replication and further research. https://github.com/wangliwfsd/LLNMPP/.


Assuntos
Algoritmos , Aprendizado de Máquina , Membranas , Bases de Dados Factuais , Polímeros
16.
Appl Environ Microbiol ; 90(1): e0125023, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38112479

RESUMO

Valorization of microalgae into high-value products and drop-in chemicals can reduce our dependence on non-renewable fossil fuels in an environmentally sustainable way. Among the valuable products, medium-chain carboxylic acids (MCCAs) and alcohols are attractive building blocks as fuel precursors. However, the biosynthetic mechanisms of MCCAs and alcohols in anaerobic microalgae fermentation and the regulating role of pH on the microbial structure and metabolism interaction among different functional groups have never been documented. In this work, we systematically investigated the roles of pH (5, 7, and 10) on the production of MCCAs and alcohols in anaerobic microalgae fermentation. The gene-centric and genome-centric metagenomes were employed to uncover the dynamics and metabolic network of the key players in the microbial communities. The results indicated that the pH significantly changed the product spectrum. The maximum production rate of alcohol was obtained at pH 5, while pH 7 was more beneficial for MCCA production. Metagenomic analysis reveals that this differential performance under different pH is attributed to the transformation of microbial guild and metabolism regulated by pH. The composition of various functional groups for MCCA and alcohol production also varies at different pH levels. Finally, a metabolic network was proposed to reveal the microbial interactions at different pH levels and thus provide insights into bioconversion of microalgae to high-value biofuels.IMPORTANCECarboxylate platforms encompass a biosynthesis process involving a mixed and undefined culture, enabling the conversion of microalgae, rich in carbohydrates and protein, into valuable fuels and mitigating the risks associated with algae blooms. However, there is little known about the effects of pH on the metabolic pathways of chain elongation and alcohol production in anaerobic microalgae fermentation. Moreover, convoluted and interdependent microbial interactions encumber efforts to characterize how organics and electrons flow among microbiome members. In this work, we compared metabolic differences among three different pH levels (5, 7, and 10) in anaerobic microalgae fermentation. In addition, genome-centric metagenomic analysis was conducted to reveal the microbial interaction for medium-chain carboxylic acid and alcohol production.


Assuntos
Ácidos Carboxílicos , Microalgas , Fermentação , Ácidos Carboxílicos/metabolismo , Microalgas/metabolismo , Anaerobiose , Etanol/metabolismo , Concentração de Íons de Hidrogênio
17.
Heliyon ; 9(11): e21957, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38028001

RESUMO

Recovering resources from wastewater treatment is vital for the transition from a linear to a circular economy model in the water sector. Volatile Fatty Acids (VFAs) are valuable products among the possible recovered resources. This study investigates the influence of potassium permanganate (KMnO4) addition during acidogenic fermentation of waste activated sludge for enhancing VFAs production. Specifically, different fermentation batch tests with and without KMnO4 addition were carried out using two distinctive sewage sludges as feedstocks. Results showed that KMnO4 addition increased the VFAs yield up to 144 and 196 mgCOD/g VSS for the two sludges. When KMnO4 was used as pre-treatment, 55 % of sCOD were VFAs. This latter result was mainly debited to the recalcitrant organics' disruption promoted by the oxidative permanganate ability.

18.
Chemosphere ; 345: 140472, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852381

RESUMO

Engineering robust non-noble metal electrocatalysts towards efficient impure water (e.g., seawater, wastewater) oxidation is a prospective approach to achieve carbon neutrality via accelerating green hydrogen energy development. Herein, a NiCo layered double hydroxides (LDH)/NiFe LDH composite (NiCo-LDH/NiFe-LDH) was developed for oxygen evolution reaction (OER) via a hydrothermal process-electrodeposition method. The optimal NiCo-LDH/NiFe-LDH-30 composite only needed an overpotential (η) of 240 mV to drive 100 mA/cm2 in alkalized freshwater, with a low Tafel slope of 16.6 mV/dec and good stability for over 90 h. Further analyses suggested that the strong interface interaction between NiCo-LDH and NiFe-LDH accelerated the oxygen gas bubble evolution and boosted interfacial charge transfer, and the formed built-in electric field and higher oxidation state species (metal oxyhydroxides) contributed to the high intrinsic catalytic activity. The NiCo-LDH/NiFe-LDH-30 composite also held excellent OER activities in different impure water environments, including alkaline 0.5 M NaCl solution (η100 = 333 mV), alkaline lake water (η100 = 345 mV), and alkaline wastewater treatment plant (WWTP) effluent (η100 = 320 mV). More importantly, the potential effects of Cl- and CO32- in impure water were revealed during the OER process. This work elaborates on the role of built-in electric field and the strong coupling interaction in composite catalysts, which pave the way for the design of cost-effective catalysts with excellent adaptability in different water environments.


Assuntos
Hidróxidos , Água , Água do Mar , Lagos , Oxigênio
19.
J Environ Manage ; 348: 119223, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37827085

RESUMO

The recovery of phosphorus (P) through vivianite crystallization offers a promising approach for resource utilization in wastewater treatment plants. However, this process encounters challenges in terms of small product size and low purity. The study aimed to assess the feasibility of using quartz sand as a seed material to enhance P recovery and vivianite crystal characteristics from anaerobic fermentation supernatant. Various factors, including seed dosage, seed size, Fe/P ratio, and pH, were systematically tested in batch experiments to assess their influence. Results demonstrated that the effect of seed enhancement on vivianite crystallization was more pronounced under higher seed dosages, smaller seed sizes, and lower pH or Fe/P ratio. The addition of seeds increased P recovery by 4.43% in the actual anaerobic fermentation supernatant and also augmented the average particle size of the recovered product from 19.57 to 39.28 µm. Moreover, introducing quartz sand as a seed material effectively reduced co-precipitation, leading to a notable 12.5% increase in the purity of the recovered vivianite compared to the non-seeded process. The formation of an ion adsorption layer on the surface of quartz sand facilitated crystal attachment and growth, significantly accelerating the vivianite crystallization rate and enhancing P recovery. The economic analysis focused on chemical costs further affirmed the economic viability of using quartz sand as a seed material for P recovery through vivianite crystallization, which provides valuable insights for future research and engineering applications.


Assuntos
Fósforo , Quartzo , Fermentação , Areia , Anaerobiose , Cristalização , Esgotos , Eliminação de Resíduos Líquidos , Fosfatos/química , Compostos Ferrosos/química
20.
Environ Sci Technol ; 57(39): 14611-14621, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37733635

RESUMO

Antibiotic resistance genes (ARGs) and microplastics (MPs) are recognized as emerging contaminants and threats to global human health. Despite both of them being significantly detected in their "hotspots", i.e., waste activated sludge (WAS), rare studies on how MPs affect ARGs and antibiotic-resistant bacteria (ARB) in anaerobic sludge digestion are available. Herein, the fate of ARGs and ARB after exposure to MPs of three dosages (10, 30, and 80 particles/g-TS), three polymer types (LDPE, PET, and PS), and three branching extents (LDPE, LLDPE, and HDPE) in anaerobic sludge digestion was investigated. Metagenomic results indicated that all variants of MPs resulted in an increase of the relative abundance of ARGs in the digester compared to the control. The abundance of ARGs demonstrated a dosage-dependent relationship within the range from 10 to 80 particles/g-TS, resulting in an increase from 4.5 to 27.9% compared to the control. Branching structure and polymer type influence ARG level in the sludge digester as well. Mechanism studies revealed that LDPE selectively enriched potential ARB and ARGs in the surface biofilm, possibly creating a favorable environment for ARB proliferation and ARG exchange. Furthermore, vertical transfer of ARGs was facilitated by LDPE through increasing bacterial cell proliferation accompanied by the enhancement of relevant functional genes. The elevated abundance of mobile genetic elements (MGEs) and ARGs-carrying plasmids also demonstrated that MGE-mediated horizontal transfer was promoted by LDPE at 80 particles/g-TS. This effect was compounded by increased oxidative stress, cell membrane permeability, and cell cohesion, collectively facilitating horizontal ARG transfer. Consequently, both vertical and horizontal transfer of ARGs could be concurrently promoted by LDPE an in anaerobic sludge digester.


Assuntos
Microplásticos , Esgotos , Humanos , Esgotos/microbiologia , Plásticos , Genes Bacterianos , Anaerobiose , Transferência Genética Horizontal , Prevalência , Antagonistas de Receptores de Angiotensina , Polietileno , Antibacterianos/farmacologia , Inibidores da Enzima Conversora de Angiotensina , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Digestão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...